A note on dominating cycles in 2-connected graphs
نویسندگان
چکیده
Let G be a 2-connected graph on n vertices such that d(x)+ d(y)+ d(z)>/n for all triples of independent vertices x,y,z. We prove that every longest cycle in G is a dominating cycle unless G is a spanning subgraph of a graph belonging to one of four easily specified classes of graphs.
منابع مشابه
Lower bound on the weakly connected domination number of a cycle-disjoint graph
For a connected graph G and any non-empty S ⊆ V (G), S is called a weakly connected dominating set of G if the subgraph obtained from G by removing all edges each joining any two vertices in V (G) \ S is connected. The weakly connected domination number γw(G) is defined to be the minimum integer k with |S| = k for some weakly connected dominating set S of G. In this note, we extend a result on ...
متن کاملCharacterization of signed paths and cycles admitting minus dominating function
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
متن کاملA note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
متن کاملLong Cycles in 2-Connected Triangle-Free Graphs
Dirac showed that a 2–connected graph of order n with minimum degree δ has circumference at least min{2δ, n}. We prove that a 2– connected, triangle-free graph G of order n with minimum degree δ either has circumference at least min{4δ−4, n}, or every longest cycle in G is dominating. This result is best possible in the sense that there exist bipartite graphs with minimum degree δ whose longest...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 155 شماره
صفحات -
تاریخ انتشار 1996